

WOMEN SHELLFISHERS AND FOOD SECURITY PROJECT MUTIVARIATE ANALYSIS OF THE THEORY OF CHANGE MODEL

Seeking empirical evidence to support the Women Shellfisher's and Food Security Theory of Change

DRAFT: July 2022

The Theory of Change Model from the Program Description

Four Hypotheses to be Tested

- Improved and <u>gender equitable management</u> of shellfisheries and mangroves <u>increases</u> <u>shellfish yields</u> and availability of this nutrient rich food protein, <u>which increases</u> <u>shellfish consumption</u> and contributes to <u>improved household nutrition and income</u> of those engaged in shellfishing.
- 2. <u>Gender sensitive governance</u> that promotes co-management and tenure rights and empowered women that manage shellfisheries sustainably <u>improves conservation of mangroves</u>.
- 3. <u>High consumption of shellfish contributes to lower prevalence of anemia in women of</u> reproductive age and is shown as a main contributor compared to other factors such as malaria or hookworms.
- 4. <u>Enriching landscapes around mangrove-shellfish estuaries systems with complementary</u> food and nutrition sources reduces the extractive pressure on the mangroves thereby <u>improving its health</u> which subsequently <u>boosts the productivity of the shellfishery</u> having <u>direct impact on household food security</u>.

Data collected on the following themes:

- I. Mangroves (ICRAF)
- 2. Shell fishery (UCC)
- 3. Water quality (UCC)
- 4. Landscape level food systems (ICRAF)
- 5. Governance (ICRAF and UCC)
- 6. Socio-economics of shellfishers (UCC)
- 7. Nutrition (Univ of Ghana)

The Refined Theory of Change Model and Associated Hypotheses

Ę

Overlay of Four Hypotheses on the Theory of Change Model

Ę

Example of Hypothesis I: Path Model, Variables and "Equations"

Model equations (outcome = predictors)

Increased shellfish health/yields = gender sensitive governance (total gov score + WEAI) + water quality parameters + country + site

Increased shellfish consumption = increased shellfish health + country + site

Increased income = increased shellfish yields + country + site

Gender sensitive governance = co-mgt + tenure + trad mgt + women empowerment

Variables	
Shellfish Governance	
Co-management	
Tenure rights	
Traditional mgt	
Governance_total_score	
Women's empowerment score	
Water Quality	
Salinity	
Dissolved Oxygen (DO)	
Turbidity	
рН	
Depth	
Temperature	
Shellfish Health	
Fishing_mortality	
Exploitation_ratio	
Fisheries _Health_rank	
Shellfish_Height_cm	
Shellfish Consumption	
Total_oyster_consumption	
Income	
Household_income rank	
Shellfish_income	
Shellfish_income_rank	
Per_capita_food_consumption	
Poverty /Wealth measures	
Poverty index	
Livelihoods	
Livelihood_dependency	
Livelihood diversity	

Approaches for Data Analysis

- Qualitative across sites and countries
- Statistics
 - Parametric and non-parametric
 - Regression and correlation

Challenges for Data Analysis

- Small number of sites (n = 6)
- Statistics: clustering to account for site effects use of mean per site
- Some household data collected by different groups making it difficult to compare with statistical power

Results

Hypothesis I: Improved and gender equitable management of shellfisheries increases shellfish yields, which increases shellfish consumption and income of those engaged in shellfishing.

Governance and Shellfishery Health

Spearman rho=-0.72, p=0.109

Spearman rho=-0.72, p=0.109

Spearman rho=0.75, p=0.086

Spearman rho=0.84, p = 0.038

Women's Empowerment and Shellfishery Health

Mean shell height = mean waei, rho=0.83, p=0.042 Fisheries health rank = mean waei, rho= 0.72, p=0.109 Fishing mortality = mean waei, rho=-0.66, p=0.156 Exploitation ratio = mean waei, rho=-0.60, p=0.208

Fisheries health rank by mean shell height and physico-chemical parameters

Fisheries Health Rank	Shell height	Temp (0C)	DO (ug/l)	Salinity (ppt)	рH	Depth (m)	Turbidity (NTU)	
Mean values of sit	te paramet	ers by Fi	sheries l	Health Ra	nk			Underexploited
overexploited	5.51	28.81	5.30	24.77	7.74	1.84	17.65	greater shell
fully exploited	6.12	28.80	5.62	24.50	7.85	1.20	21.85	height, higher
underexploited	6.49	28.11	5.22	34.20	7.46	2.97	5.91	salinity and
Mean values	of site para	meters	by Fishe	ries Healt	th Rank	dichoto	mized	greater depth compared to
over or fully exploited	5.82	28.80	5.50	24.61	7.80	1.45	20.20	the over and fully exploited
under-exploited	6.49	28.11	5.22	34.20	7.46	2.97	5.91	sites.

Mean natural mortality, fishing mortality, exploitation ratio and shell height per country.

Country	Mean M (N=3)	Mean F (N=3)	Mean E (N=3)	Mean shell height (N=4200)
Ghana	I.783	0.840	0.277	5.84
The Gambia	1.370	1.063	0.307	6.26

Ghana sites have a higher mean temperature, pH, turbidity and lower mean depth and salinity, as well as higher mean natural mortality and shorter mean shell height than sites in The Gambia.

Shellfish Consumption and Fishery Health

There were no statistically significant differences between fishery health ranks and shellfish consumption or per capita food expenditures.

Income, livelihood dependency and poverty index versus fisheries health rank dichotomized

Variable	Mean value for over and fully exploited	Mean value for underexploited
Household income rank	2.51	2.94
Shellfish livelihood dependency	I.62	I.67
Livelihood diversity	I.66	I.00
Shellfish income rank	6.66	8.39
Poverty/wealth index	2.43	3.53

p > 0.1 in models adjusting for clustering, N=120

Hypothesis I Conclusions

Hypothesis	Conclusion	Comments
Improved governance improves the health of the shellfishery resource.		Qualitatively some evidence, statistical significance on I parameter
Women's empowerment improves the health of the shellfishery resource.		Qualitatively some evidence, statistical significance on I parameter
Physico-chemical parameters of the waterbody influences shellfishery health.		Some evidence for some parameters – depth, salinity, turbidity
Improved shellfishery health increases shellfish consumption.		No evidence
In sites with healthier shellfisheries, women shellfishers have higher shellfishing income, overall household income, and lower poverty rates.	1	Qualitatively some weak evidence, no statistical significance
Greater livelihood diversity is related to higher household income.		No evidence

Results

Hypothesis 2: Shellfisher mangrove management actions improves mangrove habitat which in turn improves the health of shellfish stocks.

Hypothesis 2 Path Model

Improved shellfisher mangrove mgt. / protection e.g. replanting/ no cutting rule

Improved shellfish health of stocks/ sustainable exploitation

Other explanatory factors:

- Legal mangrove protection at site level
- WEAI of women shellfishers
- Pressure/threats reduction
- Country and site effects

Improved mangrove health/habitat No relationship between Mangrove Health variables with:

- I. Shellfisher protections for mangroves
- 2. Legal site protection
- 3. Increasing women's empowerment

Site	Shellfisher Mangrove Protection	Mangrove Legal Protection	Mangrove Change 2010 - 2020 (%)	Mangrove Trajectory of Change between 2000-2010 & 2010- 2020	Mangrove Qualitative Health	Mean Women's Empower Score
Densu	1	I	+3 3	significant improvement	low	10.80
Narkwa	0	0	+680	significant improvement	moderate	5.35
Whin	0	0	+37	modest improvement	high	6.00
Tanbi	I	I	-0.67	slight decline	moderate	12.44
Bullok	0	0	-1.36	slight improvement	high	8.70
Allahien	0	0	+10.4	modest improvement	low	8.67

Some weak evidence between mangrove health and pressure scores

Weak evidence that in healthier mangrove systems: fishing mortality and exploitation ratios are higher, and fisheries health lower.

Hypothesis 2 Conclusions

Hypothesis	Conclusion	Comments
Improved governance by shellfishers improves the health of the Mangrove resource.	I	No evidence
Improved legal protection at site level improves the health of the Mangrove resource.		No evidence
Women's empowerment improves the health of the shellfishery resource.	•	No evidence
Higher pressures and threats results in less healthy mangrove resource.		Weak qualitative evidence
Healthier Mangroves leads to Healthier Shellfisheries		Weak qualitative evidence in the opposite direction of expectations

Results

Hypothesis 3: High consumption of shellfish and increased income from shellfishing contributes to lower prevalence of anemia in women of reproductive age.(and improves other nutrition variables). Shellfish consumption is shown as a main contributor to reduced anemia compared to other factors such as malaria or hookworms, geographic factors or household and individual characteristics.

Hypothesis 3 Path Model

Increased shellfish consumption: (total, iron, zinc)

Increased income from shellfishing

Improved Nutrition: HFIAS WDD Anemia: zinc, iron

No evidence that increased shellfish consumption reduces anemia Some evidence that shellfish income and wealth factors influence nutrition

Outcome	Predictor	Case level regression (beta coef or odds ratio)	p-value	rho	p-value
Diet diversity					
score	wealth score	0.07 (0.02, 0.12)	<mark>0.01</mark>	0.66	0.156
Min diet diversity	wealth score	1.09 (1.01, 1.18)	<mark>0.04</mark>	0.66	0.156
Food secure or					
mild insecurity	shellfish income			0.80	<mark>0.010</mark>
Food secure or					
mild insecurity	wealth score	1.24 (1.19, 1.31)	<mark>0.001</mark>	0.83	<mark>0.042</mark>

Hypothesis 3 Conclusions

Hypothesis	Conclusion	Comments
Increased shallfish consumption decreases anomia		No evidence
increased shelling consumption decreases allerna		Consumption levels very low
Increased challfish consumption improves putrition	16	No evidence
Increased shelling consumption improves nutrition		Consumption levels very low
Increased shellfish income and household wealth improves nutrition		Some evidence

Results

Hypothesis 4: Enriching landscapes around mangrove-shellfish estuaries systems with complementary food and nutrition sources reduces the extractive pressure on the mangroves thereby improving mangrove health and improves shellfisher household income and household food security.

Hypothesis 4 Path Model

Improved proximate landscape livelihoods and food systems Other explanatory factors

- # visits to local markets
- distance to market
- access to forests
- farm size
- family size
- yrs in village

Some weak evidence of value of household diverse food systems

- Inverse correlation of mangrove trajectory and diverse food system may be a coping mechanism.
- Inverse correlation of food expenditure and diverse food system may indicate more subsistence food dependence.

Outcome	Predictor	case level regression (p-value)	Spearman rho (case level)	p-value
Mangrove trajectory	HH diverse food system	0.008	<mark>-0.77</mark>	0.076
Dietary diversity score	HH diverse food system		0.77	0.072
Min diet diversity	HH diverse food system		0.77	0.072
Per capita food expenditure	HH diverse food system		<mark>-0.77</mark>	0.072
HH income	HH diverse food system		0.77	0.072

No evidence of per capita expenditures on food consumption or household income influence nutrition in this study.

Hypothesis 4 Conclusions

Hypothesis	Conclusion	Comments
Diverse food systems reduce pressure and threats on mangroves.		No evidence
Diverse food systems increase income.	1	Weak qualitative evidence
Diverse food systems increase household food expenditures.		Opposite our expectations. Households grow rather than buy food?
Diverse food systems improve dietary diversity		Weak evidence.
Diverse food systems improve mangrove health		Weak qualitative evidence opposite our expectation. May be a coping mechanism to declining resource base?
Increased per capita expenditure on food consumption improves nutrition		No evidence
Increased income improves nutrition		No evidence

Some thoughts for future research

- Increase the number of sites sampled
- All household data in one survey of the same household
- Review variables used and consider different measures where possible
- Time series rather than one off snapshot in time
- The COVID factor?